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addressing. Some architectures, including that of the Pentium, have a collection
of two or more specialized sets (such as data and displacement). One advan-
tage of this latter approach is that, for a fixed number of registers, a functional
split requires fewer bits to be used in the instruction. For example, with two
sets of eight registers, only 3 bits are required to identify a register; the opcode
implicitly will determine which set of registers is being referenced.

¢ Address range: For addresses that reference memory, the range of addresses that
can be referenced is related to the number of address bits. Because this imposes a
severe limitation, direct addressing is rarely used. With displacement addressing,
the range is opened up to the length of the address register. Even so, it is still
convenient to allow rather large displacements from the register address, which
requires a relatively large number of address bits in the instruction.

* Address granularity: For addresses that reference memory rather than registers,
another factor is the granularity of addressing. In a system with 16- or 32-bit
words, an address can reference a word or a byte at the designer’s choice. Byte
addressing is convenient for character manipulation but requires, for a fixed-size
memory, more address bits.

Thus, the designer is faced with a host of factors to consider and balance. How
critical the various choices are is not clear. As an example, we cite one study
[CRAG79] that compared various instruction format approaches, including the use
of a stack, general-purpose registers, an accumulator, and only memory-to-register
approaches. Using a consistent set of assumptions, no significant difference in code
space or execution time was observed.

Let us briefly look at how two historical machine designs balance these vari-
ous factors.

PDP-8 One of the simplest instruction designs for a general-purpose computer was
for the PDP-8 [BELL78b]. The PDP-8 uses 12-bit instructions and operates on 12-bit
words. There is a single general-purpose register, the accumulator.

Despite the limitations of this design, the addressing is quite flexible. Each
memory reference consists of 7 bits plus two 1-bit modifiers. The memory is divided
into fixed-length pages of 2’ = 128 words each. Address calculation is based on ref-
erences to page 0 or the current page (page containing this instruction) as deter-
mined by the page bit. The second modifier bit indicates whether direct or indirect
addressing is to be used. These two modes can be used in combination, so that an
indirect address is a 12-bit address contained in a word of page 0 or the current
page. In addition, 8 dedicated words on page 0 are autoindex “registers.” When an
indirect reference is made to one of these locations, preindexing occurs.

Figure 11.4 shows the PDP-8 instruction format. There are a 3-bit opcode and
three types of instructions. For opcodes 0 through 5, the format is a single-address
memory reference instruction including a page bit and an indirect bit. Thus, there are
only six basic operations. To enlarge the group of operations, opcode 7 defines a regis-
ter reference or microinstruction. In this format, the remaining bits are used to encode
additional operations. In general, each bit defines a specific operation (e.g., clear accu-
mulator), and these bits can be combined in a single instruction. The microinstruction
strategy was used as far back as the PDP-1 by DEC and is, in a sense, a forerunner of
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Memory Reference Instructions

L Opcode | DA | ZIC | Displacement |

0 2 3 4 5 11
Input/Output Instructions

L.L 10 ] Device ] Opcode ]

0 2 3 8 9 11
Register Reference Instructions

Group | microinstructions

(1 1- 1 0 ]CLAICLL[CMA[CML]RAR[RAL]BSW]IACI
0 1 2 3 4 5 6 7 8 9 10 11
Group 2 microinstructions

1 1 1 0 ]CLAISMA{SZA[SNL!RSSIOSRIHLT[ 0 |
0 1 2 3 4 5 6 7 8 9 10 11
Group 3 microinstructions

1 I L 0 jcrafMoal o TMQLT o T o [ o [ 1 ]
0 1 2 3 4 S 6 7 8 9 10 i1

D/1 = Direct/Indirect address TIAC = Increment ACcumulator

Z/C = Page 0 or Current page

SMA = Skip on Minus Accumulator

CLA = Clear Accumulator SZA = Skip on Zero Accumulator
CLL = Clear Link SNL = Skip on Nonzero Link
CMA = CoMplement Accumulator RSS = Reverse Skip Sense

CML = CoMplement Link OSR = Or with Switch Register

RAR = Rotate Accumulator Right
RAL = Rotate Accumulator Left
BSW = Byte SWap

HLT = HalT
MQA = Multiplier Quotient into Accumulator
MQL = Multiplier Quotient Load

Figure 11.4 PDP-8 Instruction Formats

today’s microprogrammed machines, to be discussed in Part Four. Opcode 6 is the
I/O operation; 6 bits are used to select one of 64 devices, and 3 bits specify a particular
I/O command.

The PDP-8 instruction format is remarkably efficient. It supports indirect
addressing, displacement addressing, and indexing. With the use of the opcode
extension, it supports a total of approximately 35 instructions. Given the constraints
of a 12-bit instruction length, the designers could hardly have done better.

PDP-10 A sharp contrast to the instruction set of the PDP-8 is that of the PDP-10.
The PDP-10 was designed to be a large-scale time-shared system, with an emphasis on
making the system easy to program, even if additional hardware expense was involved.

Among the design principles that were employed in designing the instruction
set were [BELL78c].

¢ Orthogonality: Orthogonality is a principle by which two variables are inde-
pendent of each other. In the context of an instruction set, the term indicates
that other elements of an instruction are independent of (not determined by)
the opcode. The PDP-10 designers use the term to describe the fact that an
address is always computed in the same way, independent of the opcode. This
is in contrast to many machines, where the address mode sometimes depends
implicitly on the operator being used.

Completeness: Each arithmetic data type (integer, fixed-point, real) should have
a complete and identical set of operations.
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Opcode Register | I Index ‘ Memory addrcss “

0 8 9 12 14 17 18 35
1 = indirect bit

Figure 1.5 PDP-10 Instruction Format

¢ Direct addressing: Base plus displacement addressing, which places a memory
organization burden on the programmer, was avoided in favor of direct
addressing.

Each of these principles advances the main goal of ease of programming.

The PDP-10 has a 36-bit word length and a 36-bit instruction length. The fixed
instruction format is shown in Figure 11.5. The opcode occupies 9 bits, allowing up to
512 operations. In fact, a total of 365 different instructions are defined. Most instruc-
tions have two addresses, one of which is one of 16 general-purpose registers. Thus,
this operand reference occupies 4 bits. The other operand reference starts with an
18-bit memory address field. This can be used as an immediate operand or a memory
address. In the latter usage, both indexing and indirect addressing are allowed. The
same general-purpose registers are also used as index registers.

A 36-bit instruction length is true luxury. There is no need to do clever things
to get more opcodes; a 9-bit opcode field is more than adequate. Addressing is also
straightforward. An 18-bit address field makes direct addressing desirable. For
memory sizes greater than 28, indirection is provided. For the ease of the program-
mer, indexing is provided for table manipulation and iterative programs. Also, with
an 18-bit operand field, immediate addressing becomes attractive.

The PDP-10 instruction set design does accomplish the objectives listed earlier
[LUND77]. It eases the task of the programmer or compiler at the expense of an
inefficient utilization of space. This was a conscious choice made by the designers and
therefore cannot be faulted as poor design.

Variable-Length Instructions

The examples we have looked at so far have used a single fixed instruction length,
and we have implicitly discussed trade-offs in that context. But the designer may
choose instead to provide a variety of instruction formats of different lengths. This
tactic makes it easy to provide a large repertoire of opcodes, with different opcode
lengths. Addressing can be more flexible, with various combinations of register and
memory references plus addressing modes. With variable-length instructions, these
many variations can be provided efficiently and compactly.

The principal price to pay for variable-length instructions is an increase in the
complexity of the processor. Falling hardware prices, the use of microprogramming
(discussed in Part Four), and a general increase in understanding the principles of
processor design have all contributed to making this a small price to pay. However,
we will see that RISC and superscalar machines can exploit the use of fixed-length
instructions to provide improved performance.

The use of variable-length instructions does not remove the desirability of
making all of the instruction lengths integrally related to the word length. Because
the processor does not know the length of the next instruction to be fetched, a typical
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strategy is to fetch a number of bytes or words equal to at least the longest possible
instruction. This means that sometimes multiple instructions are fetched. However,
as we shall see in Chapter 12, this is a good strategy to follow in any case.

PDP-11 The PDP-11 was designed to provide a powerful and flexible instruction
set within the constraints of a 16-bit minicomputer [BELL70].

The PDP-11 employs a set of eight 16-bit general-purpose registers. Two of
these registers have additional significance: One is used as a stack pointer for special-
purpose stack operations, and one is used as the program counter, which contains the
address of the next instruction.

Figure 11.6 shows the PDP-11 instruction formats. Thirteen different formats
are used, encompassing zero-, one-, and two-address instruction types. The opcode
can vary from 4 to 16 bits in length. Register references are 6 bits in length. Three
bits identify the register, and the remaining 3 bits identify the addressing mode. The
PDP-11 is endowed with a rich set of addressing modes. One advantage of linking
the addressing mode to the operand rather than the opcode, as is sometimes done,
is that any addressing mode can be used with any opcode. As was mentioned, this
independence is referred to as orthogonality.

PDP-11 instructions are usually one word (16 bits) long. For some instructions,
one or two memory addresses are appended, so that 32-bit and 48-bit instructions
are part of the repertoire. This provides for further flexibility in addressing,

The PDP-11 instruction set and addressing capability are complex. This increases
both hardware cost and programming complexity. The advantage is that more efficient
or compact programs can be developed.

VAX Most architectures provide a relatively small number of fixed instruction for-
mats. This can cause two problems for the programmer. First, addressing mode and
opcode are not orthogonal. For example, for a given operation, one operand must
come from a register and another from memory, or both from registers, and so on.
Second, only a limited number of operands can be accommodated: typically up to
two or three. Because some operations inherently require more operands, various
strategies must be used to achieve the desired result using two or more instructions.

To avoid these problems, two criteria were used in designing the VAX instruc-
tion format [STRE78]:

1. All instructions should have the “natural” number of operands.
2. All operands should have the same generality in specification.

The result is a highly variable instruction format. An instruction consists of a 1- or
2-byte opcode followed by from zero to six operand specifiers, depending on the
opcode. The minimal instruction length is 1 byte, and instructions up to 37 bytes can
be constructed. Figure 11.7 gives a few examples.

The VAX instruction begins with a 1-byte opcode. This suffices to handle most
VAX instructions. However, as there are over 300 different instructions, 8 bits are
not enough. The hexadecimal codes FD and FF indicate an extended opcode, with
the actual opcode being specified in the second byte.

The remainder of the instruction consists of up to six operand specifiers. An
operand specifier is, at minimum, a 1-byte format in which the leftmost 4 bits are the
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Hexadecimal Explanation Assembler Notation
Format and Description
8 bits
-+ ————
Opcode for RSB RSB
Return from subroutine
D| 4 Opcode for CLRL CLRL R9
519 Register R9 Clear register R9
B0 Opcode for MOVW MOVW 356(R4), 25(R11)
Cl| 4 Word displacement mode,  Move a word from address
6| 4 Register R4 that is 356 plus contents
o 1 } 356 in hexadecimal of R4 to address that is
AA B Byte displacement mode, 25 plus contents of R11
Register R11
119 25 in hexadecimal
Cil1 Opcode for ADDL3 ADDL3 #5, R0, @A[R2]
015 Short literal 5 Add S to a 32-bit integer in
510 Register mode RO RO and store the result in
. Ind fix R2 location whose address is
42 Ind_ex pre 1xd ati sum of A and 4 times the
D F ndirect word relative contents of R2
(displacement from PC)
--} Amount of displacement from
PC relative to location A

Figure 11.7 Example of VAX Instructions

address mode specifier. The only exception to this rule is the literal mode, which is
signaled by the pattern 00 in the leftmost 2 bits, leaving space for a 6-bit literal.
Because of this exception, a total of 12 different addressing modes can be specified.

An operand specifier often consists of just one byte, with the rightmost 4 bits
specifying one of 16 general-purpose registers. The length of the operand specifier
can be extended in one of two ways. First, a constant value of one or more bytes may
immediately follow the first byte of the operand specifier. An example of this is the
displacement mode, in which an 8-, 16-, or 32-bit displacement is used. Second, an
index mode of addressing may be used. In this case, the first byte of the operand
specifier consists of the 4-bit addressing mode code of 0100 and a 4-bit index regis-
ter identifier. The remainder of the operand specifier consists of the base address
specifier, which may itself be one or more bytes in length.

The reader may be wondering, as the author did, what kind of instruction requires
six operands. Surprisingly, the VAX has a number of such instructions. Consider

ADDP6 OP1, OP2, OP3, OP4, OP5, OP6



11.4 / PENTIUM AND POWERPC INSTRUCTION FORMATS 407

This instruction adds two packed decimal numbers. OP1 and OP2 specify the length
and starting address of one decimal string; OP3 and OP4 specify a second string.
These two strings are added and the result is stored in the decimal string whose
length and starting location are specified by OP5 and OP6.

The VAX instruction set provides for a wide variety of operations and address-
ing modes. This gives a programmer, such as a compiler writer, a very powerful and
flexible tool for developing programs. In theory, this should lead to efficient machine-
language compilations of high-level language programs and, in general, to effective
and efficient use of processor resources. The penalty to be paid for these benefits is
the increased complexity of the processor compared with a processor with a simpler
instruction set and format.

We return to these matters in Chapter 13, where we examine the case for very
simple instruction sets.

11.4 PENTIUM AND POWERPC INSTRUCTION FORMATS

Pentium Instruction Formats

The Pentium is equipped with a variety of instruction formats. Of the elements
described in this subsection, only the opcode field is always present. Figure 11.8 illus-
trates the general instruction format. Instructions are made up of from zero to four
optional instruction prefixes, a 1- or 2-byte opcode, an optional address specifier
(which consists of the ModR/m byte and the Scale Index byte) an optional displace-
ment, and an optional immediate field.

Oortl Oorl Oor1l Oor1l  bytes

Instruction| Segment Operand | Address

id size size
prefix ovel override | override

0,123, or4bytos“\ lor2 Oorl Oor1l 0,1,2,0r4 0,1,2,0r4
Instruction prefixes Opcode ModR/M SIB Displacement immediate
| Mod | Reg/Opeode RM | | Seale |  Index Base
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Figure 11.8  Pentium Instruction Format
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Let us first consider the prefix bytes:

* Instruction prefixes: The instruction prefix, if present, consists of the LOCK
prefix or one of the repeat prefixes. The LOCK prefix is used to ensure exclu-
sive use of shared memory in multiprocessor environments. The repeat prefixes
specify repeated operation of a string, which enables the Pentium to process
strings much faster than with a regular software loop. There are five different
repeat prefixes: REP, REPE, REPZ, REPNE, and REPNZ. When the absolute
REP prefix is present, the operation specified in the instruction is executed
repeatedly on successive elements of the string; the number of repetitions is
specified in register CX. The conditional REP prefix causes the instruction to
repeat until the count in CX goes to zero or until the condition is met.

* Segment override: Explicitly specifies which segment register an instruction
should use, overriding the default segment-register selection generated by the
Pentium for that instruction.

* Address size: The processor can address memory using either 16- or 32-bit
addresses. The address size determines the displacement size in instructions
and the size of address offsets generated during effective address calculation.
One of these sizes is designated as default, and the address size prefix switches
between 32-bit and 16-bit address generation.

* Operand size: An instruction has a default operand size of 16 or 32 bits, and
the operand prefix switches between 32-bit and 16-bit operands.

The instruction itself includes the following fields:

* Opcode: One- or two-byte opcode. The opcode may also include bits that spec-
ify if data is byte- or full-size (16 or 32 bits depending on context), direction of
data operation (to or from memory), and whether an immediate data field
must be sign extended.

* ModR/m: This byte, and the next, provide addressing information. The ModR/m
byte specifies whether an operand is in a register or in memory; if it is in memo-
ry, then fields within the byte specify the addressing mode to be used. The
ModR/m byte consists of three fields: The Mod field (2 bits) combines with
the r/m field to form 32 possible values: 8 registers and 24 indexing modes; the
Reg/Opcode field (3 bits) specifies either a register number or three more bits of
opcode information; the r/m field (3 bits) can specify a register as the location of
an operand, or it can form part of the addressing-mode encoding in combination
with the Mod field.

* SIB: Certain encoding of the ModR/m byte specifies the inclusion of the SIB
byte to specify fully the addressing mode. The SIB byte consists of three fields:
The Scale field (2 bits) specifies the scale factor for scaled indexing; the Index
field (3 bits) specifies the index register; the Base field (3 bits) specifies the
base register.

* Displacement: When the addressing-mode specifier indicates that a displace-
ment is used, an 8-, 16-, or 32-bit signed integer displacement field is added.

¢ Immediate: Provides the value of an 8-, 16-, or 32-bit operand.
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Several comparisons may be useful here. In the Pentium format, the addressing
mode is provided as part of the opcode sequence rather than with each operand.
Because only one operand can have address-mode information, only one memory
operand can be referenced in an instruction. In contrast, the VAX carries the address-
mode information with each operand, allowing memory-to-memory operations. The
Pentium instructions are therefore more compact. However, if a memory-to-memory
operation is required, the VAX can accomplish this in a single instruction.

The Pentium format allows the use of not only 1-byte, but also 2-byte and
4-byte offsets for indexing. Although the use of the larger index offsets results in
longer instructions, this feature provides needed flexibility. For example, it is useful
in addressing large arrays or large stack frames. In contrast, the IBM S/370 instruc-
tion format allows offsets no greater than 4K bytes (12 bits of offset information),
and the offset must be positive. When a location is not in reach of this offset, the
compiler must generate extra code to generate the needed address. This problem is
especially apparent in dealing with stack frames that have local variables occupying
in excess of 4K bytes. As [DEWA90] puts it, “Generating code for the 370 is so
painful as a result of that restriction that there have even been compilers for the 370
that simply chose to limit the size of the stack frame to 4K bytes.”

As can be seen, the encoding of the Pentium instruction set is very complex.
This has to do partly with the need to be backward compatible with the 8086
machine and partly with a desire on the part of the designers to provide every possi-
ble assistance to the compiler writer in producing efficient code. It is a matter of
some debate whether an instruction set as complex as this is preferable to the oppo-
site extreme of the RISC instruction sets.

PowerPC Instruction Formats

All instructions in the PowerPC are 32 bits long and follow a regular format. The
first 6 bits of an instruction specify the operation to be performed. In some cases,
there is an extension to the opcode elsewhere in the instruction that specifies a par-
ticular subcase of an operation. In Figure 11.9, opcode bits are represented by the
shaded portion of each format.

Note the regular structure of the formats, which eases the job of the instruction
decode units. For all load/store, arithmetic, and logical instructions, the opcode is fol-
lowed by two S-bit register references, enabling 32 general-purpose registers to be used.

The branch instructions include a link (L) bit that indicates that the effective
address of the instruction following the branch instruction is to be placed in the link
register. Two forms of the instruction also include a bit (A) that indicates whether
the addressing mode is absolute or PC relative. For the conditional branch instruc-
tions, the CR bit field specifies the bit to be tested in the condition register. The
options field specifies the conditions under which the branch is to be taken. The fol-
lowing conditions may be specified:

¢ Branch always.

e Branch if count # 0 and condition is false.
e Branch if count # 0 and condition is true.
¢ Branch if count = 0 and condition is false.
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<— 6 Bits —— 5 Bits <— 5 Bits 16 Bits
Branch o )';“ Long immediate AL
Br Conditional | Options . |;) CR bit Branch displacement A|L
Br Conditional Options CR bit Indirect through Link or Count Register | L
(a) Branch instructions
| CR | Destbit | Sourcebit | Source bit Add, o, Xor,ete. | /]
(b) Condition register logical instructions
147 st Idirect | Dest register | Base register Displacement
L4/ st Idirect | Dest register | Base register | Index register l Size, sign, update I /
Ld/st Mdirect | Dest register | Base register Displacement ' X0 | ¥
(c) Load/store instructions
Arithmetic | Dest register | Src register | Src register I o l Add, sub, etc. l R
Add, Sub, etc. | Dest register | Src register Signed immediate value
Logical Src register | Dest register | Src register [ Add, Or, Xor, etc. 1R
And, Or, etc. Src register | Dest register Unsigned immediate value
Rotate Src register | Dest register | Shiftamt | Mask begin ] Maskend |R
Rotate or shift | Src register | Dest register | Src register Shift type or mask R
Rotate Src register | Dest register |  Shift amt Mask X0 l S|{R ¥
Rotate Src register | Dest register | Src register Mask X0 R *
Shift Src register | Dest register |  Shift amt Shift type or Mask l S|R *

(d) Integer arithmetic, logical, and shift/rotate instructions

[ Fltsgl / dbl | Dest Register | Src Register [
Src Register

Src Register [ Fadd, ec. IR]

(e) Floating-point arithmetic instructions

A = Absolute or PC Relative
L = Link to Subroutine

O = Record Overflow in XER
R = Record Conditions in CR1
XO = OPCode Extension

S = Part of Shift Amount Field

* = 64-bit implementation only

Figure 11.9  PowerPC Instruction Formats

Branch if count = 0 and condition is true.
Branch if count # 0.

Branch if count = 0.

Branch if condition is false.

Branch if condition is true.
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Most instructions that result in a computation (arithmetic, floating-point arith-
metic, logical) include a bit that indicates whether the result of the operation should
be recorded in the condition register. As will be shown, this feature is useful for
branch prediction processing.

Floating-point instructions have fields for three source registers. In many
cases, only two source registers are used. A few instructions involve multiplication
of two source registers and then addition or subtraction of a third source register.
These composite instructions are included because of the frequency of their use.
For example, the inner product that is part of many matrix operations can be
implemented using multiply-adds.

11.5 RECOMMENDED READING

The references cited in Chapter 10 are equally applicable to the material of this chapter.
[BLLAAY7] contains a detailed discussion of instruction formats and addressing modes. In ad-
dition, the reader may wish to consult [FLYNS8S5] for a discussion and analysis of instruction
set design issues, particularly those relating to formats.

BLAA97? ‘Blaauw, G., and Brooks, F. Computer Archttecture Conce{m ‘and Evolution.
Readmg, MA: Addison-Wesley, 1997.

FLYNSS Flynn, M.; Johnson, J; and Wakefield, S.“On Instructlon Sets and'lhelr Formats.”
IEEE Transactions on Computers, March 1985.

11.6 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
autoindexing immediate addressing - preindexing
base-register addressing indexing register addressing
direct addressing indirect addressing register indirect addressing
displacement addressing instruction format relative addressing
effective address | postindexing word

Review Questions

1.1 Briefly define immediate addressing.

11.2  Briefly define direct addressing.

11.3  Briefly define indirect addressing.

‘11.4  Briefly define register addressing.

11.5  Briefly define register indirect addressing.
11.6  Briefly define displacement addressing.
11.7 Briefly define relative addressing,
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11.8
119
11.10
1L11

What is the advantage of autoindexing?

What is the difference between postindexing and preindexing?

What facts go into determining the use of the addressing bits of an instruction?
What are the advantages and disadvantages of using a variable-length instruction format?

Problems

11.1

11.2

11.3

11.4

Given the following memory values and a one-address machine with an accumulator,
what values do the following instructions load into the accumulator?
* Word 20 contains 40.
* Word 30 contains 50.
* Word 40 contains 60.
* Word 50 contains 70.
LOAD IMMEDIATE 20
LOAD DIRECT 20
LOAD INDIRECT 20
LOAD IMMEDIATE 30
LOAD DIRECT 30
. LOAD INDIRECT 30

Let the address stored in the program counter be designated by the symbol X1. The
instruction stored in X1 has an address part (operand reference) X2. The operand
needed to execute the instruction is stored in the memory word with address X3. An
index register contains the value X4. What is the relationship between these various
quantities if the addressing mode of the instruction is (a) direct; (b) indirect; (c¢) PC
relative; (d) indexed?

An address field in an instruction contains decimal value 14. Where is the corre-
sponding operand located for

a. immediate addressing?

b. direct addressing?

¢. indirect addressing?

d. register addressing?

e. register indirect addressing?

Consider a 16-bit processor in which the following appears in main memory, starting
at location 200:

epTs

=

200 Load to AC Mode
201 500
202 Next instruction

The first part of the first word indicates that this instruction loads a value into an
accumulator. The Mode field specifies an addressing mode and, if appropriate,
indicates a source register; assume that when used, the source register is R1, which
has a value of 400. There is also a base register that contains the value 100. The
value of 500 in location 201 may be part of the address calculation. Assume that
location 399 contains the value 999, location 400 contains the value 1000, and so
on. Determine the effective address and the operand to be loaded for the following
address modes:

a. Direct d. PCrelative g. Register indirect
b. Immediate | e. Displacement | h. Autoindexing with increment, using R1
¢. Indirect f. Register




1L5

1.6

1.7

11.8

11.9

11.10

11.11

1112

11.13
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A PC-relative mode branch instruction is 3 bytes long. The address of the instruction,
in decimal, is 256028. Determine the branch target address if the signed displacement
in the instruction is —31.

A PC-relative mode branch instruction is stored in memory at address 620;,. The

branch is made to location 530,y. The address field in the instruction is 10 bits long.
What is the binary value in the instruction?

How many times does the processor need to refer to memory when it fetches and exe-
cutes an indirect-address-mode instruction if the instruction is (a) a computation requir-
ing a single operand; (b) a branch?

The IBM 370 does not provide indirect addressing. Assume that the address of an
operand is in main memory. How would you access the operand?

In [COOKS82], the author proposes that the PC-relative addressing modes be elimi-
nated in favor of other modes, such as the use of a stack. What is the disadvantage of
this proposal?

The Pentium includes the following instruction:

IMUL opl, op2, immediate

This instruction multiplies op2, which may be either register or memory, by the imme-
diate operand value, and places the result in op1, which must be a register. There is no
other three-operand instruction of this sort in the instruction set. What is the possible
use of such an instruction? Hint: Consider indexing.

Consider a processor that includes a base with indexing addressing mode. Suppose an
instruction is encountered that employs this addressing mode and specifies a dis-
placement of 1970, in' decimal. Currently the base and index register contain the deci-
mal numbers 48022 and 8, respectively. What is the address of the operand?

Define: EA = (X)+ is the effective address equal to the contents of location X, with
X incremented by one word length after the effective address is calculated;
EA = —(X) is the effective address equal to the contents of location X, with X decre-
mented by one word length before the effective address is calculated; EA = (X)-— is
the effective address equal to the contents of location X, with X decremented by one
word length after the effective address is calculated. Consider the following instruc-
tions, each in the format (Operation Source Operand, Destination Operand), with the
result of the operation placed in the destination operand.

OP X, (X)

OP (X), (X)+

OP (X)+, (X)

OP —(X), (X)

OP —(X), (X)+

OP (X)+, (X)+
g. OP (X)-, (X)
Using X as the stack pointer, which of these instructions can pop the top two elements
from the stack, perform the designated operation (e.g., ADD source to destination and
store in destination), and push the result back on the stack? For each such instruction,
does the stack grow toward memory location 0 or in the opposite direction?

Assume a stack-oriented processor that includes the stack operations PUSH and
POP. Arithmetic operations automatically involve the top one or two stack elements.
Begin with an empty stack. What stack elements remain after the following instruc-
tions are executed?

PUSH 4

PUSH 7

PUSH 8

ADD

PUSH 10

SUB

MUL

=R FE
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Justify the assertion that a 32-bit instruction is probably much less than twice as use-
ful as a 16-bit instruction.

Why was IBM’s decision to move from 36 bits to 32 bits per word wrenching, and to
whom?

Assume an instruction set that uses a fixed 16-bit instruction length. Operand specifiers
are 6 bits in length. There are K two-operand instructions and L zero-operand instruc-
tions. What is the maximum number of one-operand instructions that can be supported?
Design a variable-length opcode to allow all of the following to be encoded in a 36-bit
instruction:

* instructions with two 15-bit addresses and one 3-bit register number

* instructions with one 15-bit address and one 3-bit register number

¢ instructions with no addresses or registers

Consider the results of Problem 10.6. Assume that M is a 16-bit memory address and
that X,Y, and Z are either 16-bit addresses or 4-bit register numbers. The one-address
machine uses an accumulator, and the two- and three-address machines have 16 reg-
ister$ and instructions operating on all combinations of memory locations and regis-
ters. Assuming 8-bit opcodes and instruction lengths that are multiples of 4 bits, how
many bits does each machine need to compute X?

Is there any possible justification for an instruction with two opcodes?

The 16-bit Zilog Z8001 has the following general instruction format:
14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L Mode [

Opcode I wh | Operand 2 |  Operandl |

The mode field specifies how to locate the operands from the operand fields. The w/b
field is used in certain instructions to specify whether the operands are bytes or 16-bit
words. The operand 1 field may (depending on the mode field contents) specify one of
16 general-purpose registers. The operand 2 field may specify any general-purpose
registers except register 0. When the operand 2 field is all zeros, each of the original
opcodes takes on a new meaning.

a. How many opcodes are provided on the Z8001?

b. Suggest an efficient way to provide more opcodes and indicate the trade-off involved.
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tions. User-visible regxsters may be general purpose or have a special use,

. such as fixed-point or floating-point numbers, addresses, indexes, and seg-

" ment pointers. Control and status registers are used to control the operation

- of the processor. One obvious example is the program counter. Another

important example is a program status word (PSW) that contains a variety

of status and condition bits. These include bits to reflect the result of the

most recent arithmetic operation, interrupt enable bits, and an indicator of
whether the processor is executing in supervisor or user mode.

@ Processors make use of instruction pipelining to speed up execution. In
essence, pipelining involves breaking up the instruction cycle into a num-
.ber of separate stages that occur in sequence, such as fetch instruction,
decode instruction, determine operand addresses, fetch operands, execute
instruction, and write operand result. Instructions move through these
stages, as on an assembly line, so that in principle, each stage can be work-
ing on a different instruction at the same time. The occurrence of branch-
es and dependencies between mstructlons complicates the design and use
of pipelines.

This chapter discusses aspects of the processor not yet covered in Part Three
and sets the stage for the discussion of RISC and superscalar architecture in
Chapters 13 and 14.

We begin with a summary of processor organization. Registers, which form the
internal memory of the processor, are then analyzed. We are then in a position to
return to the discussion (begun in Section 3.2) of the instruction cycle. A description of
the instruction cycle and a common technique known as instruction pipelining com-
plete our description. The chapter concludes with an examination of some additional
aspects of the Pentium and PowerPC organizations.

12.1 PRQCESSOR ORGANIZATION

To understand the organization of the processor, let us consider the requirements
placed on the processor, the things that it must do:

* Fetch instruction: The processor reads an instruction from memory (register,
cache, main memory).

* Interpret instruction: The instruction is decoded to determine what action
is required.
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» Fetch data: The execution of an instruction may require reading data from
memory or an [/O module.

¢ Process data: The execution of an instruction may require performing some
arithmetic or logical operation on data.

» Write data: The results of an execution may require writing data to memory or
an I/O module.

To do these things, it should be clear that the processor needs to store some
data temporarily. It must remember the location of the last instruction so that it can
know where to get the next instruction. It needs to store instructions and data tem-
porarily while an instruction is being executed. In other words, the processor needs
a small internal memory.

Figure 12.1 is a simplified view of a processor, indicating its connection to
the rest of the system via the system bus. A similar interface would be needed for
any of the interconnection structures described in Chapter 3. The reader will
recall that the major components of the processor are an arithmetic and logic unit
(ALU) and a control unit (CU). The ALU does the actual computation or pro-
cessing of data. The control unit controls the movement of data and instructions
into and out of the processor and controls the operation of the ALU. In addition,
the figure shows a minimal internal memory, consisting of a set of storage loca-
tions, called registers.

Figure 12.2 is a slightly more detailed view of the processor. The data transfer
and logic control paths are indicated, including an element labeled internal processor
bus. This element is needed to transfer data between the various registers
and the ALU because the ALU in fact operates only on data in the internal proces-
sor memory. The figure also shows typical basic elements of the ALU. Note the
similarity between the internal structure of the computer as a whole and the inter-
nal structure of the processor. In both cases, there is a small collection of major
elements (computer: processor, /O, memory; processor: control unit, ALU, registers)
connected by data paths.

Registers

ALU

[T T
L]

Control -
unit

Control Data Address
bus bus bus

L,_,-——Y\)

System
bus

Figure 12.1 The CPU with the System Bus
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Figure 12.2 Internal Structure of the CPU

12.2 REGISTER ORGANIZATION

As we discussed in Chapter 4, a computer system employs a memory hierarchy. At
higher levels of the hierarchy, memory is faster, smaller, and more expensive (per bit).
Within the processor, there is a set of registers that function as a level of memory
above main memory and cache in the hierarchy. The registers in the processor per-
form two roles:

* User-visible registers: Enable the machine- or assembly language programmer
to minimize main memory references by optimizing use of registers.

* Control and status registers: Used by the control unit to control the operation

of the processor and by privileged, operating system programs to control the
execution of programs.

There is not a clean separation of registers into these two categories. For example,
on some machines the program counter is user visible (e.g., Pentium), but on many it is
not. For purposes of the following discussion, however, we will use these categories.

User-Visible Registers
A user-visible register is one that may be referenced by means of the machine language
that the processor executes. We can characterize these in the following categories:

* General purpose

¢ Data

¢ Address

* Condition codes
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General-purpose registers can be assigned to a variety of functions by the
programmer. Sometimes their use within the instruction set is orthogonal to the
operation. That is, any general-purpose register can contain the operand for any
opcode. This provides true general-purpose register use. Often, however, there are
restrictions. For example, there may be dedicated registers for floating-point and
stack operations.

In some cases, general-purpose registers can be used for addressing func-
tions (e.g., register indirect, displacement). In other cases, there is a partial or
clean separation between data registers and address registers. Data registers may
be used only to hold data and cannot be employed in the calculation of an
operand address. Address registers may themselves be somewhat general pur-
pose, or they may be devoted to a particular addressing mode. Examples include
the following:

* Segment pointers: In a machine with segmented addressing (see Section 8.3),a
segment register holds the address of the base of the segment. There may be
multiple registers: for example, one for the operating system and one for the
current process.

* Index registers: These are used for indexed addressing and may be autoindexed.

« Stack pointer: If there is user-visible stack addressing, then typically there is
a dedicated register that points to the top of the stack. This allows implicit
addressing; that is, push, pop, and other stack instructions need not contain an
explicit stack operand.

There are several design issues to be addressed here. An important issue is
whether to use completely general-purpose registers or to specialize their use.
We have already touched on this issue in the preceding chapter because it affects
instruction set design. With the use of specialized registers, it can generally be
implicit in the opcode which type of register a certain operand specifier refers to.
The operand specifier must only identify one of a set of specialized registers rather
than one out of all the registers, thus saving bits. On the other hand, this specializa-
tion limits the programmer’s flexibility.

Another design issue is the number of registers, either general purpose or data
plus address, to be provided. Again, this affects instruction set design because more
registers require more operand specifier bits. As we previously discussed, some-
where between 8 and 32 registers appears optimum [LUND77]. Fewer registers
result in more memory references; more registers do not noticeably reduce memory
references (e.g., see [WILL90]). However, a new approach, which finds advantage in
the use of hundreds of registers, is exhibited in some RISC systems and is discussed
in Chapter 13.

Finally, there is the issue of register length. Registers that must hold addresses
obviously must be at least long enough to hold the largest address. Data registers
should be able to hold values of most data types. Some machines allow two contigu-
ous registers to be used as one for holding double-length values.

A final category of registers, which is at least partially visible to the user, holds
condition codes (also referred to as flags). Condition codes are bits set by the proces-
sor hardware as the result of operations. For example, an arithmetic operation may
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Table 12.1 Condition Codes
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produce a positive, negative, zero, or overflow result. In addition to the result itself
being stored in a register or memory, a condition code is also set: The code may sub-
sequently be tested as part of a conditional branch operation.

Condition code bits are collected into one or more registers. Usually, they
form part of a control register. Generally, machine instructions allow these bits to be
read by implicit reference, but the programmer cannot alter them.

Many processors, including those based on the 1A-64 architecture and the MIPS
processors, do not use condition codes at all. Rather, conditional branch instructions
specify a comparison to be made and act on the result of the comparison, without stor-
ing a condition code. Table 12.1, based on [DERO&7], lists key advantages and disad-

vantages of condition codes.

In some machines, a subroutine call will result in the automatic saving of all
user-visible registers, to be restored on return. The processor performs the saving
and restoring as part of the execution of call and return instructions. This allows
each subroutine to use the user-visible registers independently. On other machines,
it is the responsibility of the programmer to save the contents of the relevant user-
visible registers prior to a subroutine call, by including instructions for this purpose

in the program.

Control and Status Registers

There are a variety of processor registers that are employed to control the operation
of the processor. Most of these, on most machines, are not visible to the user. Some
of them may be visible to machine instructions execnted in a control or operating

system mode.

Of course, different machines will have different register organizations and
use different terminology. We list here a reasonably complete list of register types,

with a brief description.
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Four registers are essential to instruction execution:

¢ Program counter (PC): Contains the address of an instruction to be fetched
 Instruction register (IR): Contains the instruction most recently fetched
* Memory address register (MAR): Contains the address of a location in memory

* Memory buffer register (MBR): Contains a word of data to be written to
memory or the word most recently read

Not all processors have internal registers designated as MAR and MBR, but
some equivalent buffering mechanism is needed whereby the bits to be transferred to
the system bus are staged and the bits to be read from the data bus are temporarily
stored. :

Typically, the processor updates the PC after each instruction fetch so that the
PC always points to the next instruction to be executed. A branch or skip instruction
will also modify the contents of the PC. The fetched instruction is loaded into an IR,
where the opcode and operand specifiers are analyzed. Data are exchanged
with memory using the MAR and MBR. In a bus-organized system, the MAR con-
nects directly to the address bus, and the MBR connects directly to the data bus.
User-visible registers, in turn, exchange data with the MBR.

The four registers just mentioned are used for the movement of data between
the processor and memory. Within the processor, data must be presented to the
ALU for processing. The ALU may have direct access to the MBR and user-visible
registers. Alternatively, there may be additional buffering registers at the boundary
to the ALU; these registers serve as input and output registers for the ALU and
exchange data with the MBR and user-visible registers.

Many processor designs include a register or set of registers, often known as
the program status word (PSW), that contain status information. The PSW typically
contains condition codes plus other status information. Common fields or flags
include the following:

» Sign: Contains the sign bit of the result of the last arithmetic operation.
» Zero: Set when the result is 0.

¢ Carry: Set if an operation resulted in a carry (addition) into or borrow
(subtraction) out of a high-order bit. Used for multiword arithmetic operations.

» Equal: Set if a logical compare result is equality.
¢ Overflow: Used to indicate arithmetic overflow.
¢ Interrupt enable/disable: Used to enable or disable interrupts.

* Supervisor: Indicates whether the processor is executing in supervisor or user
mode. Certain privileged instructions can be executed only in supervisor
mode, and certain areas of memory can be accessed only in supervisor mode.

A number of other registers related to status and control might be found in a
particular processor design. There may be a pointer to a block of memory contain-
ing additional status information (e.g.. process control blocks). In machines using
vectored interrupts, an interrupt vector register may be provided. If a stack is used
to implement certain functions (e.g.. subroutine call), then a system stack pointer is
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needed. A page table pointer is used with a virtual memory system. Finally, registers
may be used in the control of I/O operations.

A number of factors go into the design of the control and status register orga-
nization. One key issue is operating system support. Certain types of control infor-
mation are of specific utility to the operating system. If the processor designer has a
functional understanding of the operating system to be used, then the register orga-
nization can to some extent be tailored to the operating system.

Another key design decision is the allocation of control information between
registers and memory. It is common to dedicate the first (lowest) few hundred or
thousand words of memory for control purposes. The designer must decide how
much control information should be in registers and how much in memory. The
usual trade-off of cost versus speed arises.

Example Microprocessor Register Organizations

It is instructive to examine and compare the register organization of comparable
systems. In this section, we look at two 16-bit microprocessors that were designed
at about the same time: the Motorola MC68000 [STRI79] and the Intel 8086
[MORS78]. Figures 12.3a and b depict the register organization of each; purely
internal registers, such as a memory address register, are not shown.

Data registers General registers General registers
Bt o AX |Accumulator| EAX AX
BX Base EBX BX
CX Count ECX } CX’
DX Data EDX DX
Pointer & Index ESP | SP
SP [Stack pointer| EBP BP
BP | Base pointer | ESI : N SI
SI |Sourceindex| EDI ) DI
Address registers DI | Destindex
' ; At Program status
Segment « . FLAGS register
Cs Code . Instruction pointer
DS Data
SS Stack (c) 80386—Pentium 4
ES Extra
Program status
Instr Ptr
Flags
Program status
Program counter (b) 8086
[ Status register
(a) MC68000

Figure 12.3 Example Microprocessor Register Organizations
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The MC68000 partitions its 32-bit registers into eight data registers and nine
address registers. The eight data registers are used primarily for data manipulation and
are also used in addressing as index registers. The width of the registers allows 8-, 16-,
and 32-bit data operations, determined by opcode. The address registers contain 32-bit
(no segmentation) addresses; two of these registers are also used as stack pointers, one
for users and one for the operating system, depending on the current execution mode.
Both registers are numbered 7, because only one can be used at a time. The MC68000
also includes a 32-bit program counter and a 16-bit status register.

The Motorola team wanted a very regular instruction set, with no special-
purpose registers. A concern for code efficiency led them to divide the regis-
ters into two functional components, saving one bit on each register specifier.
This seems a reasonable compromise between complete generality and code
compaction.

The Intel 8086 takes a different approach to register organization. Every regis-
ter is special purpose, although some registers are also usable as general purpose.
The 8086 contains four 16-bit data registers that are addressable on a byte or 16-bit
basis, and four 16-bit pointer and index registers. The data registers can be used as
general purpose in some instructions. In others, the registers are used implicitly. For
example, a multiply instruction always uses the accumulator. The four pointer regis-
ters are also used implicitly in a number of operations; each contains a segment off-
set. There are also four 16-bit segment registers. Three of the four segment registers
are used in a dedicated, implicit fashion, to point to the segment of the current
instruction (useful for branch instructions), a segment containing data, and a seg-
ment containing a stack, respectively. These dedicated and implicit uses provide for
compact encoding at the cost of reduced flexibility. The 8086 also includes an
instruction pointer and a set of 1-bit status and control flags.

The point of this comparison should be clear. There is no universally accepted
philosophy concerning the best way to organize processor registers [TOON81]. As
with overall instruction set design and so many other processor design issues, it is
still a matter of judgment and taste.

A second instructive point concerning register organization design is illustrated
in Figure 12.3c. This figure shows the user-visible register organization for the Intel
80386 [ELAYSS], which is a 32-bit microprocessor designed as an extension of the
8086." The 80386 uses 32-bit registers. However, to provide upward compatibility for
programs written on the earlier machine, the 80386 retains the original register organi-
zation embedded in the new organization. Given this design constraint, the architects
of the 32-bit processors had limited flexibility in designing the register organization.

In Section 3.2, we described the processor’s instruction cycle (Figure 3.9). To recall,
an instruction cycle includes the following subcycles:

'Because the MC68000 already uses 32-bit registers, the MC68020 [MACG84], which is a full 32-bit
architecture, uses the same register organization.
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* Fetch: Read the next instruction from memory into the processor.
* Execute: Interpret the opcode and perform the indicated operation.

* Interrupt: If interrupts are enabled and an interrupt has occurred, save the
current process state and service the interrupt.

We are now in a position to elaborate somewhat on the instruction cycle. First,
we must introduce one additional subcycle, known as the indirect cycle.

The Indirect Cycle

We have seen, in Chapter 11, that the execution of an instruction may involve one or
more operands in memory, each of which requires a memory access. Further, if indi-
rect addressing is used, then additional memory accesses are required.

We can think of the fetching of indirect addresses as one more instruction sub-
cycle. The result is shown in Figure 12.4. The main line of activity consists of alter-
nating instruction fetch and instruction execution activities. After an instruction is
fetched, it is examined to determine if any indirect addressing is involved. If so, the
required operands are fetched using indirect addressing. Following execution, an
interrupt may be processed before the next instruction fetch.

Another way to view this process is shown in Figure 12.5, which is a revised
version of Figure 3.12. This illustrates more correctly the nature of the instruction
cycle. Once an instruction is fetched, its operand specifiers must be identified. Each
input operand in memory is then fetched, and this process may require indirect
addressing. Register-based operands need not be fetched. Once the opcode is exe-
cuted, a similar process may be needed to store the result in main memory.

Data Flow

The exact sequence of events during an instruction cycle depends on the design of
the processor. We can, however, indicate in general terms what must happen. Let us
assume that a processor that employs a memory address register (MAR), a memory
buffer register (MBR), a program counter (PC), and an instruction register (IR).

Figure 12.4 The Instruction Cycle




weidei(] 21v1S 9[2AD UOHONIISU]  §°7] ndny|

1dnuayut elEp J01D2A 10 UOIIONIISUT 1XU Y1013
ON Fuins 10j wmoy *319{dwod uononnsuy

spueiado
aidamnpy

synsal
sdunpy

uonAIIpU] uonAIIpU]

425




426 CHAPTER 12 / PROCESSOR STRUCTURE AND FUNCTION
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Figure 12.6 Data Flow, Fetch Cycle

During the fetch cycle, an instruction is read from memory. Figure 12.6 shows
the flow of data during this cycle. The PC contains the address of the next instruc-
tion to be fetched. This address is moved to the MAR and placed on the address bus.
The control unit requests a memory read, and the result is placed on the data bus
and copied into the MBR and then moved to the IR. Meanwhile, the PC is incre-
mented by 1, preparatory for the next fetch.

Once the fetch cycle is over, the control unit examines the contents of the IR
to determine if it contains an operand specifier using indirect addressing. If so, an
indirect cycle is performed. As shown in Figure 12.7, this is a simple cycle. The right-
most N bits of the MBR, which contain the address reference, are transferred to the
MAR. Then the control unit requests a memory read, to get the desired address of

the operand into the MBR.
CPU
MAR ] )
> > Ly
K=| F——|Memory
Control | — 01
unit =
MBR —

Address Data Control
bus bus bus

Figure 12.7  Data Flow, Indirect Cycle




12.4 / INSTRUCTION PIPELINING 427

CPU

PC MAR J—f>
ﬁ — Memory

—

Control ;J>

| Unit

VATAY

L

v

| ————>{MBR

Address Data Control
bus bus bus

Figure 12.8 Data Flow, Interrupt Cycle

The fetch and indirect cycles are simple and predictable. The execute cycle
takes many forms; the form depends on which of the various machine instructions is
in the IR. This cycle may involve transferring data among registers, read or write
from memory or I/O, and/or the invocation of the ALU.

Like the fetch and indirect cycles, the interrupt cycle is simple and predictable
(Figure 12.8). The current contents of the PC must be saved so that the processor can
resume normal activity after the interrupt. Thus, the contents of the PC are trans-
ferred to the MBR to be written into memory. The special memory location reserved
for this purpose is loaded into the MAR from the control unit. It might, for example,
be a stack pointer. The PC is loaded with the address of the interrupt routine. As a
result, the next instruction cycle will begin by fetching the appropriate instruction.

12.4 INSTRUCTION PIPELINING

As computer systems evolve, greater performance can be achieved by taking advan-
tage of improvements in technology, such as faster circuitry. In addition, organiza-
tional enhancements to the processor can improve performance. We have already
seen some examples of this, such as the use of multiple registers rather than a single
accumulator, and the use of a cache memory. Another organizational approach,
which is quite common, is instruction pipelining.

Pipelining Strategy

Instruction pipelining is similar to the use of an assembly line in a manufacturing
plant. An assembly line takes advantage of the fact that a product goes through var-
ious stages of production. By laying the production process out in an assembly line,
products at various stages can be worked on simultaneously. This process is also
referred to as pipelining, because, as in a pipeline, new inputs are accepted at one
end before previously accepted inputs appear as outputs at the other end.

To apply this concept to instruction execution, we must recognize that, in
fact, an instruction has a number of stages. Figure 12.5, for example, breaks the
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Figure 12.9 Two-Stage Instruction Pipeline

instruction cycle up into 10 tasks, which occur in sequence. Clearly, there should
be some opportunity for pipelining.

As a simple approach, consider subdividing instruction processing into two
stages: fetch instruction and execute instruction. There are times during the execu-
tion of an instruction when main memory is not being accessed. This time could be
used to fetch the next instruction in parallel with the execution of the current one.
Figure 12.9a depicts this approach. The pipeline has two independent stages. The
first stage fetches an instruction and buffers it. When the second stage is free, the
first stage passes it the buffered instruction. While the second stage is executing

-the instruction, the first stage takes advantage of any unused memory cycles to fetch

and buffer the next instruction. This is called instruction prefetch or fetch overlap.

It should be clear that this process will speed up instruction execution. If the
fetch and execute stages were of equal duration, the instruction cycle time would be
halved. However, if we look more closely at this pipeline (Figure 12.9b), we will see
that this doubling of execution rate is unlikely for two reasons:

1. The execution time will generally be longer than the fetch time. Execution will
involve reading and storing operands and the performance of some operation.
Thus, the fetch stage may have to wait for some time before it can empty its buffer.

2. A conditional branch instruction makes the address of the next instruction to
be fetched unknown. Thus, the fetch stage must wait until it receives the next
instruction address from the execute stage. The execute stage may then have
to wait while the next instruction is fetched.

Guessing can reduce the time loss from the second reason. A simple rule is the
following: When a conditional branch instruction is passed on from the fetch to
the execute stage, the fetch stage fetches the next instruction in memory after the
branch instruction. Then, if the branch is not taken, no time is lost. If the branch is
taken, the fetched instruction must be discarded and a new instruction fetched.
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While these factors reduce the potential effectiveness of the two-stage pipeline,
some speedup occurs. To gain further speedup, the pipeline must have more stages.
Let us consider the following decomposition of the instruction processing.

* Fetch instruction (FI): Read the next expected instruction into a buffer.
* Decode instruction (DI): Determine the opcode and the operand specifiers.

» Calculate operands (CO): Calculate the effective address of each source
operand. This may involve displacement, register indirect, indirect, or other
forms of address calculation.

* Fetch operands (FO): Fetch each operand from memory. Operands in regis-
ters need not be fetched.

« Execute instruction (EI): Perform the indicated operation and store the resulit,
if any, in the specified destination operand location.

* Write operand (WO): Store the result in memory.

With this decomposition, the various stages will be of more nearly equal dura-
tion. For the sake of illustration, let us assume equal duration. Using this assump-
tion, Figure 12.10 shows that a six-stage pipeline can reduce the execution time for
9 instructions from 54 time units to 14 time units.

Several comments are in order: The diagram assumes that each instruction goes
through all six stages of the pipeline. This will not always be the case. For example,
a load instruction does not need the WO stage. However, to simplify the pipeline
hardware, the timing is set up assuming that each instruction requires all six stages.
Also, the diagram assumes that all of the stages can be performed in parallel. In par-
ticular, it is assumed that there are no memory conflicts. For example, the FI, FO, and
WO stages involve a memory access. The diagram implies that all these accesses can

Time

1 2 3 4 5 6 7 8 9 |10 |11 |12 |13 | 14
Instruction1 | ¥1 | DI | CO | FO | EI | WO
Instruction 2 FI | DI |CO|FO | EI | WO
Instruction 3 FI | DI |CO|FO | EI |WO
Instruction 4 FI1 | DI |CO | FO | EI {WO
Instruction S FI | DI |CO|FO | EI | WO
Instruction 6 FI | DI |CO| FO| EI |WO
Instruction 7 FI1 | DI |CO|FO| EI | WO
Instruction 8 FI | DI | CO| FO | EI | WO
Instruction 9 FI | DI |[CO|FO| EI |WO

1

Figure 12.10 Timing Diagram for Instruction Pipeline Operation
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Time _ B Branch penalty

1 2 3 4 5 6 7 8 9 {10 |11 |12 (13 | 14
Instruction1 | FI | DI | CO | FO El WO
Instruction 2 FI | DI |CO| FO | EI | WO
Instruction 3 FI1 | DI |CO|FO| EI |WO
Instruction 4 F1 | DI |CO|FO
Instruction FI | DI | CO
Instruction 6 FI | DI
Instruction 7 FI
Instruction 15 FI1 || DI |CO|FO| EI |WO
Instruction 16 FI | DI | CO| FO | EI | WO

Figure 12.11 The Effect of a Conditional Branch on Instruction Pipeline Operation

occur simultaneously. Most memory systems will not permit that. However, the
desired value may be in cache, or the FO or WO stage may be null. Thus, much of the
time, memory conflicts will not slow down the pipeline.

Several other factors serve to limit the performance enhancement. If the six
stages are not of equal duration, there will be some waiting involved at various
pipeline stages, as discussed before for the two-stage pipeline. Another difficulty
is the conditional branch instruction, which can invalidate several instruction
fetches. A similar unpredictable event is an interrupt. Figure 12.11 illustrates the
effects of the conditional branch, using the same program as Figure 12.10. Assume
that instruction 3 is a conditional branch to instruction 15. Until the instruction is
executed, there is no way of knowing which instruction will come next. The
pipeline, in this example, simply loads the next instruction in sequence (instruc-
tion 4) and proceeds. In Figure 12.10, the branch is not taken, and we get the full
performance benefit of the enhancement. In Figure 12.11, the branch is taken.
This is not determined until the end of time unit 7. At this point, the pipeline must
be cleared of instructions that are not useful. During time unit 8, instruction 15
enters the pipeline. No instructions complete during time units 9 through 12; this
is the performance penalty incurred because we could not anticipate the branch.
Figure 12.12 indicates the logic needed for pipelining to account for branches and
interrupts.

Other problems arise that did not appear in our simple two-stage orga-
nization. The CO stage may depend on the contents of a register that could be
altered by a previous instruction that is still in the pipeline. Other such register
and memory conflicts could occur. The system must contain logic to account for
this type of conflict.
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instruction
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pipe

Figure 12.12  Six-Stage CPU Instruction Pipeline

To clarify pipeline operation, it might be useful to look at an alternative
depiction. Figures 12.10 and 12.11 show the progression of time horizontally
across the figures, with each row showing the progress of an individual instruc-
tion. Figure 12.13 shows same sequence of events, with time progressing verti-
cally down the figure, and each row showing the state of the pipeline at a given
point in time. In Figure 12.13a (which corresponds to Figure 12.10), the pipeline
is full at time 6, with 6 different instructions in various stages of execution, and
remains full through time 9; we assume that instruction 19 is the last instruction
to be executed. In Figure 12.13b, (which corresponds to Figure 12.11), the
pipeline is full at times 6 and 7. At time 7, instruction 3 is in the execute stage
and executes a branch to instruction 15. At this point, instructions 14 through I7
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Figure 12.13  An Alternative Pipeline Depiction

are flushed from the pipeline, so that at time 8, only two instructions are in the
pipeline, I3 and I15.

From the preceding discussion, it might appear that the greater the number
of stages in the pipeline, the faster the execution rate. Some of the IBM S/360
designers pointed out two factors that frustrate this seemingly simple pattern for
high-performance design [ANDEG67a], and they remain elements that designer
must still consider:

1. At each stage of the pipeline, there is some overhead involved in moving data
from buffer to buffer and in performing various preparation and delivery func-
tions. This overhead can appreciably lengthen the total execution time of a
single instruction. This is significant when sequential instructions are logically
dependent, either through heavy use of branching or through memory access
dependencies.

2. The amount of control logic required to handle memory and register
dependencies and to optimize the use of the pipeline increases enormously
with the number of stages. This can lead to a situation where the logic con-
trolling the gating between stages is more complex than the stages being
controlled.

Instruction pipelining is a powerful technique for enhancing performance but
requires careful design to achieve optimum results with reasonable complexity.
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Pipeline Performance

In this subsection, we develop some simple measures of pipeline performance and
relative speedup (based on a discussion in [HWANO93]). The cycle time 7 of an instruc-
tion pipeline is the time needed to advance a set of instructions one stage through the
pipeline; each column in Figures 12.10 and 12.11 represents one cycle time. The cycle
time can be determined as

r=max[r,]+d=1,+d l=i=«k

where
7; = time delay of the circuitry in the ith stage of the pipeline
T,» = maximum stage delay (delay through stage which
experiences the largest delay)
k = number of stages in the instruction pipeline
d = time delay of a latch, needed to advance signals and data

from one stage to the next

In general, the time delay d is equivalent to a clock pulse and 7,, >> d. Now
suppose that n instructions are processed, with no branches. Let T}, be the total
time required for a pipeline with k stages to execute n instructions. Then

Tin=1k+ (n-1 (12.1)

A total of k cycles are required to complete the execution of the first instruction,
and the remaining n — 1 instructions require n — 1 cycles.? This equation is easily
verified from Figure 12.10. The ninth instruction completes at time cycle 14:

4=[6+(9-1)]

Now consider an processor with equivalent functions but no pipeline, and assume
that the instruction cycle time is k7. The speedup factor for the instruction pipeline
compared to execution without the pipeline is defined as

_ T, _ nkt _ nk
Tin [k+(n-D]r k+@®n-1)

Sk 12.2)

Figure 12.14a plots the speedup factor as a function of the number of instruc-
tions that are executed without a branch. As might be expected, at the limit (n — 00),
we have a k-fold speedup. Figure 12.14b shows the speedup factor as a function of
the number of stages in the instruction pipeline.® In this case, the speedup factor
approaches the number of instructions that can be fed into the pipeline without
branches. Thus, the larger the number of pipeline stages, the greater the potential for
speedup. However, as a practical matter, the potential gains of additional pipeline

*We are being a bit sloppy here. The cycle time will only equal the maximum value of = when all the
stages are full. At the beginning, the cycle time may be less for the first one or few cycles.
Note that the x-axis is logarithmic in Figure 12.14a and linear in Figure 12.14b.
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Figure 12.14 Speedup Factors with Instruction Pipelining

stages are countered by increases in cost, delays between stages, and the fact that
branches will be encountered requiring the flushing of the pipeline.

Dealing with Branches

One of the major problems in designing an instruction pipeline is assuring a steady
flow of instructions to the initial stages of the pipeline. The primary impediment, as
we have seen, is the conditional branch instruction. Until the instruction is actually
executed, it is impossible to determine whether the branch will be taken or not.

A variety of approaches have been taken for dealing with conditional branches:

¢ Multiple streams
¢ Prefetch branch target
¢ Loop buffer

Branch prediction

Delayed branch
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Multiple Streams A simple pipeline suffers a penalty for a branch instruction
because it must choose one of two instructions to fetch next and may make the wrong
choice. A brute-force approach is to replicate the initial portions of the pipeline and
allow the pipeline to fetch both instructions, making use of two streams. There are two
problems with this approach:

* With multiple pipelines there are contention delays for access to the registers
and to memory.

* Additional branch instructions may enter the pipeline (either stream) before
the original branch decision is resolved. Each such instruction needs an addi-
tional stream.

Despite these drawbacks, this strategy can improve performance. Examples of
machines with two or more pipeline streams are the IBM 370/168 and the IBM 3033.

Prefetch Branch Target When a conditional branch is recognized, the target of
the branch is prefetched, in addition to the instruction following the branch. This
target is then saved until the branch instruction is executed. If the branch is taken,
the target has already been prefetched.

The IBM 360/91 uses this approach.

Loop Buffer A loop buffer is a small, very-high-speed memory maintained by
the instruction fetch stage of the pipeline and containing the n most recently fetched
instructions, in sequence. If a branch is to be taken, the hardware first checks whether
the branch target is within the buffer. If so, the next instruction is fetched from the
buffer. The loop buffer has three benefits:

1. With the use of prefetching, the loop buffer will contain some instruction sequen-
tially ahead of the current instruction fetch address. Thus, instructions fetched in
sequence will be available without the usual memory access time.

[ o]

. If a branch occurs to a target just a few locations ahead of the address of the
branch instruction, the target will already be in the buffer. This is useful for the
rather common occurrence of IF-THEN and IF-THEN-ELSE sequences.

3. This strategy is particularly well suited to dealing with loops, or iterations; hence
the name loop buffer. If the loop buffer is large enough to contain all the instruc-
tions in a loop, then those instructions need to be fetched from memory only
once, for the first iteration. For subsequent iterations, all the needed instructions
are already in the buffer.

The loop buffer is similar in principle to a cache dedicated to instructions. The
differences are that the loop buffer only retains instructions in sequence and is much
smaller in size and hence lower in cost.

Figure 12.15 gives an example of a loop buffer. If the buffer contains 256 bytes,
and byte addressing is used, then the least significant 8 bits are used to index the
buffer. The remaining most significant bits are checked to determine if the branch
target lies within the environment captured by the buffer.

Among the machines using a loop buffer are some of the CDC machines
(Star-100, 6600, 7600) and the CRAY-1. A specialized form of loop buffer is avail-
able on the Motorola 68010, for executing a three-instruction loop involving the
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Figure 12.15 Loop Buffer

DBcc (decrement and branch on condition) instruction (see Problem 12.14). A
three-word buffer is maintained, and the processor executes these instructions re-
peatedly until the loop condition is satisfied.

Branch Prediction Various techniques can be used to predict whether a branch
will be taken. Among the more common are the following:

¢ Predict never taken

¢ Predict always taken

¢ Predict by opcode

* Taken/not taken switch
¢ Branch history table

The first three approaches are static: They do not depend on the execution his-
tory up to the time of the conditional branch instruction. The latter two approaches
are dynamic: They depend on the execution history.

The first two approaches are the simplest. These either always assume that the
branch will not be taken and continue to fetch instructions in sequence, or they always
assume that the branch will be taken and always fetch from the branch target. The
68020 and the VAX 11/780 use the predict-never-taken approach. The VAX 11/780
also includes a feature to minimize the effect of a wrong decision. If the fetch of the
instruction after the branch will cause a page fault or protection violation, the proces-
sor halts its prefetching until it is sure that the instruction should be fetched.

Studies analyzing program behavior have shown that conditional branches are
taken more than 50% of the time [LILJ88],and so if the cost of prefetching from either
path is the same, then always prefetching from the branch target address should give
better performance than always prefetching from the sequential path. However, in a
paged machine, prefetching the branch target is more likely to cause a page fault than
prefetching the next instruction in sequence, and so this performance penalty should be
taken into account. An avoidance mechanism may be employed to reduce this penalty.

The final static approach makes the decision based on the opcode of the
branch instruction. The processor assumes that the branch will be taken for certain
branch opcodes and not for others. [LILJ88] reports success rates of greater than
75% with this strategy.
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Dynamic branch strategies attempt to improve the accuracy of prediction by
recording the history of conditional branch instructions in a program. For example, one
or more bits can be associated with each conditional branch instruction that reflect the
recent history of the instruction. These bits are referred to as a taken/not taken switch
that directs the processor to make a particular decision the next time the instruction is
encountered. Typically, these history bits are not associated with the instruction in main
memory. Rather, they are kept in temporary high-speed storage. One possibility is to
associate these bits with any conditional branch instruction that is in a cache. When the
instruction is replaced in the cache, its history is lost. Another possibility is to maintain
a small table for recently executed branch instructions with one or more history bits in
each entry. The processor could access the table associatively, like a cache, or by using
the low-order bits of the branch instruction’s address.

With a single bit, all that can be recorded is whether the last execution of this
instruction resulted in a branch or not. A shortcoming of using a single bit appears
in the case of a conditional branch instruction that is almost always taken, such as a
loop instruction. With only one bit of history, an error in prediction will occur twice
for each use of the loop: once on entering the loop, and once on exiting.

If two bits are used, they can be used to record the result of the last two
instances of the execution of the associated instruction, or to record a state in some
other fashion. Figure 12.16 shows a typical approach (see Problem 12.13 for other

Read next Read next
»>| conditional conditional
branch instr branch instr

Read next Read next
conditional conditional
branch instr branch instr

Figure 1216

Branch Prediction Flowchart
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possibilities). Assume that the algorithm starts at the upper left-hand corner of the
flowchart. As long as each succeeding conditional branch instruction that is encoun-
tered is taken, the decision process predicts that the next branch will be taken. If a
single prediction is wrong, the algorithm continues to predict that the next branch is
taken. Only if two successive branches are not taken does the algorithm shift to the
right-hand side of the flowchart. Subsequently, the algorithm will predict that
branches are not taken until two branches in a row are taken. Thus, the algorithm re-
quires two consecutive wrong predictions to change the prediction decision.

The decision process can be represented more compactly by a finite-state
machine, shown in Figure 12.17. The finite-state machine representation is com-
monly used in the literature.

The use of history bits, as just described, has one drawback: If the decision is
made to take the branch, the target instruction cannot be fetched until the target
address, which is an operand in the conditional branch instruction, is decoded.
Greater efficiency could be achieved if the instruction fetch could be initiated as
soon as the branch decision is made. For this purpose, more information must be
saved, in what is known as a branch target buffer, or a branch history table.

The branch history table is a small cache memory associated with the instruc-
tion fetch stage of the pipeline. Each entry in the table consists of three elements: the
address of a branch instruction, some number of history bits that record the state of
use of that instruction, and information about the target instruction. In most propos-
als and implementations, this third field contains the address of the target instruction.
Another possibility is for the third field to actually contain the target instruction.
The trade-off is clear: Storing the target address yields a smaller table but a greater
instruction fetch time compared with storing the target instruction [RECH98].

Figure 12.18 contrasts this scheme with a predict-never-taken strategy. With the
former strategy, the instruction fetch stage always fetches the next sequential address.
If a branch is taken, some logic in the processor detects this and instructs that the next
instruction be fetched from the target address (in addition to flushing the pipeline). The

Not taken

Taken
Taken
g
s X
b E
= 3
-4
Not taken
Not taken
Taken

Figure 12.17  Branch Prediction State Diagram
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Figure 12.18 Dealing with Branches

branch history table is treated as a cache. Each prefetch triggers a lookup in the branch
history table. If no match is found, the next sequential address is used for the fetch. If a
match is found, a prediction is made based on the state of the instruction: Either the
next sequential address or the branch target address is fed to the select logic.

When the branch instruction is executed, the execute stage signals the branch his-
tory table logic with the result. The state of the instruction is updated to reflect a correct
or incorrect prediction. If the prediction is incorrect, the select logic is redirected to the
correct address for the next fetch. Wher: a conditional branch instruction is encoun-
tered that is not in the table, it is added to the table and one of the existing entries is
discarded, using one of the cache replacement algorithms discussed in Chapter 4.
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One example of an implementation of a branch history table is the Advanced
Micro Device AMD29000 microprocessor.

Delayed Branch It is possible to improve pipeline performance by automatically
rearranging instructions within a program, so that branch instructions occur later than
actually desired. This intriguing approach is examined in Chapter 13.

Intel 80486 Pipelining
The 80486 implements a five-stage pipeline:

* Fetch: Instructions are fetched from the cache or from external memory and
placed into one of the two 16-byte prefetch buffers. The objective of the fetch
stage is to fill the prefetch buffers with new data as soon as the old data have
been consumed by the instruction decoder. Because instructions are of variable
length (from 1 to 11 bytes not counting prefixes). the status of the prefetcher
relative to the other pipeline stages varies from instruction to instruction. On
average, about five instructions are fetched with each 16-byte load [CRAWY0).
The fetch stage operates independently of the other stages to keep the prefetch
buffers full.

* Decode stage 1: All opcode and addressing-mode information is decoded in the
D1 stage. The required information, as well as instruction-length information. is
included in at most the first 3 bytes of the instruction. Hence, 3 bytes are passed
to the D1 stage from the prefetch buffers. The D1 decoder can then direct the
D2 stage to capture the rest of the instruction (displacement and immediate
data), which is not involved in the D1 decoding.

* Decode stage 2: The D2 stage expands each opcode into control signals for the
ALU. It also controls the computation of the more complex addressing modes.

* Execute: This stage includes ALU operations, cache access, and register update.

* Write back: This stage, if needed, updates registers and status flags modified
during the preceding execute stage. If the current instruction updates memory.
the computed value is sent to the cache and to the bus-interface write buffers
at the same time.

With the use of two decode stages, the pipeline can sustain a throughput of close
to one instruction per clock cycle. Complex instructions and conditional branches can
slow down this rate.

Figure 12.19 shows examples of the operation of the pipeline. Part a shows
that there is no delay introduced into the pipeline when a memory access is required.
However, as part b shows, there can be a delay for values used to compute memory
addresses. That is, if a value is loaded from memory into a register and that register
is then used as a base register in the next instruction, the processor will stall for
one cycle. In this example, the processor accesses the cache in the EX stage of the
first instruction and stores the value retrieved in the register during the WB stage.
However, the next instruction needs this register in its D2 stage. When the D2 stage
lines up with the WB stage of the previous instruction. bypass signal paths allow the
D2 stage to have access to the same data being used by the WB stage for writing.
saving one pipeline stage.
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[Fetn | D1 [ D2 [ EX [ WB MOV Regl, Mem1
Fetch | D1 | D2 | EX | WB MOV Regl, Reg2
Fetch | D1 | D2 | EX | WB | MOV Mem2, Regl

(a) No data load delay in the pipeline

Fetch | Il D2 EX WB MOV Regl, Mem1
Fetch | D1 D2 EX MOV Reg2, (Regl)

(b) Pointer load delay

Fetch | D1 D2 EX WB CMP Regl, Imm
Fetch | D1 D2 EX Jec Target

‘Fetch | D1 | D2 | EX | Target

(¢) Branch instruction timing

Figure 12.19 80486 Instruction Pipeline Examples

Figure 12.19c¢ illustrates the timing of a branch instruction, assuming that the
branch is taken. The compare instruction updates condition codes in the WB stage,
and bypass paths make this available to the EX stage of the jump instruction at the
same time. In parallel, the processor runs a speculative fetch cycle to the target of
the jump during the EX stage of the jump instruction. If the processor determines
a false branch condition, it discards this prefetch and continues execution with the
next sequential instruction (already fetched and decoded).

12.5 THE PENTIUM PROCESSOR '

An overview of the Pentium 4 processor organization is depicted in Figure 4.13. In
this section, we examine some of the details.

Register Organization
The register organization includes the following types of registers (Table 12.2):

» General: There are eight 32-bit general-purpose registers (see Figure 12.3c).
These may be used for all types of Pentium instructions; they can also hold
operands for address calculations. In addition, some of these registers also
serve special purposes. For example, string instructions use the contents of the
ECX, ESI, and EDI registers as operands without having to reference these
registers explicitly in the instruction. As a result, a number of instructions can
be encoded more compactly.

« Segment: The six 16-bit segment registers contain segment selectors, which
index into segment tables, as discussed in Chapter 8. The code segment (CS)
register references the segment containing the instruction being executed. The
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Table 12.2  Pentium Processor Registers

(a) Integer Unit

General 8 32 . ‘General-purpose user registers
Segment 6 16 .
Flags 1 Fivnd o 3i
Instruction Pointer - .os ! 0 i EE 5 ,32 2 1
(b) Floating-Point Unit
Numeric 8 80 - Hold flostingpoint numbers
Status A1 Status bits )
TagWord 1 Specifies contents of numeric registers
Instruction Pointer 1 ... Points to instruction interrupted by exception
Data Poiniter S | """ Points to operand interrupted by exception

stack segment (SS) register references the segment containing a user-visible
stack. The remaining segment registers (DS, ES, FS, GS) enable the user to ref-
erence up to four separate data segments at a time.

Flags: The EFLAGS register contains condition codes and various mode bits.
Instruction pointer: Contains the address of the current instruction.

There are also registers specifically devoted to the floating-point unit:

Numeric: Each register holds an extended-precision 80-bit floating-point
number. There are eight registers that function as a stack, with push and pop
operations available in the instruction set.

Control: The 16-bit control register contains bits that control the operation
of the floating-point unit, including the type of rounding control; single,
double, or extended precision; and bits to enable or disable various excep-
tion conditions.

Status: The 16-bit status register contains bits that reflect the current state of the
floating-point unit, including a 3-bit pointer to the top of the stack; condition
codes reporting the outcome of the last operation; and exception flags.

Tag word: This 16-bit register contains a 2-bit tag for each floating-point numeric
register, which indicates the nature of the contents of the corresponding register.
The four possible values are valid, zero, special (NaN, infinity, denormalized), and
empty. These tags enable programs to check the contents of a numeric register
without performing complex decoding of the actual data in the register. For
example, when a context switch is made, the processor need not save any floating-
point registers that are empty.
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Figure 12.20  Pentium [l EFLAGS Register

The use of most of the aforementioned registers is easily understood. Let us
elaborate briefly on several of the registers.

EFLAGS Register The EFLAGS register (Figure 12.20) indicates the condition
of the processor and helps to control its operation. It includes the six condition
codes defined in Table 10.9 (carry, parity, auxiliary, zero, sign, overflow), which
report the results of an integer operation. In addition, there are bits in the register
that may be referred to as control bits:

o Trap flag (TF): When set, causes an interrupt after the execution of each
instruction. This is used for debugging.

o Interrupt enable flag (IF): When set, the processor will recognize external
interrupts.

« Direction flag (DF): Determines whether string processing instructions incre-
ment or decrement the 16-bit half-registers SI and DI (for 16-bit operations)
or the 32-bit registers ESI and EDI (for 32-bit operations).

o /O privilege flag (IOPL): When set, causes the processor to generate an excep-
tion on all accesses to I/O devices during protected-mode operation.

 Resume flag (RF): Allows the programmer to disable debug exceptions so that
the instruction can be restarted after a debug exception without immediately
causing another debug exception.

 Alignment check (AC): Activates if a word or doubleword is addressed on a
nonword or nondoubleword boundary.

o Identification flag (ID): If this bit can be set and cleared, then this processor sup-
ports the processorID instruction. This instruction provides information about
the vendor, family, and model.

In addition, there are 4 bits that relate to operating mode. The nested task
(NT) flag indicates that the current task is nested within another task in protected-
mode operation. The virtual mode (VM) bit allows the programmer to enable or
disable virtual 8086 mode, which determines whether the processor runs as an 8086
machine. The virtual interrupt flag (VIF) and virtual interrupt pending (VIP) flag
are used in a multitasking environment.
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PVI = Protected mode virtual interrupt TS = Task switched
VME = Virtual 8086 mode extensions EM = Emulation
PCD = Page-level cache disable MP = Monitor coprocessor
PWT = Page-level writes transparent PE = Protection enable

Figure 12.21  Pentium 11 Control Registers

Control Registers The Pentium employs four 32-bit control registers (register CR1
is unused) to control various aspects of processor operation (Figure 12.21). The CRO
register contains system control flags, which control modes or indicate states that apply
generally to the processor rather than to the execution of an individual task. The flags
are as follows:

Protection enable (PE): Enable/disable protected mode of operation.

Monitor coprocessor (MP): Only of interest when running programs from
earlier machines on the Pentium: it relates to the presence of an arithmetic
COprocessor.

Emulation (EM): Set when the processor does not have a floating-point unit,
and causes an interrupt when an attempt is made to execute floating-point
instructions.

Task switched (TS): Indicates that the processor has switched tasks.

Extension type (ET): Not used on the Pentium; used to indicate support of
math coprocessor instructions on earlier machines.

Numeric error (NE): Enables the standard mechanism for reporting floating-
point errors on external bus lines.

Write protect (WP): When this bit is clear, read-only user-level pages can be
written by a supervisor process. This feature is useful for supporting process
creation in some operating systems.

Alignment mask (AM): Enables/disables alignment checking.
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+ Not Write through (NW): Selects mode of operation of the data cache. When
this bit is set, the data cache is inhibited from cache write-through operations.

« Cache disable (CD): Enables/disables the internal cache fill mechanism.
« Paging (PG): Enables/disables paging.

When paging is enabled, the CR2 and CR3 registers are valid. The CR2 register
holds the 32-bit linear address of the last page accessed before a page fault interrupt.
The leftmost 20 bits of CR3 hold the 20 most significant bits of the base address of
the page directory; the remainder of the address contains zeros. Two bits of CR3 are
used to drive pins that control the operation of an external cache. The page-level
cache disable (PCD) enables or disables the external cache, and the page-level writes
transparent (PWT) bit controls write through in the external cache.

Nine additional control bits are defined in CR4:

« Virtual-8086 mode extension (VME): Enables support for the virtual interrupt
flag in virtual-8086 mode.

» Protected-mode virtual Interrupts (PVI): Enables support for the virtual inter-
rupt flag in protected mode.

» Time stamp disable (TSD): Disables the read from time stamp counter
(RDTSC) instruction, which is used for debugging purposes.

* Debugging extensions (DE): Enables I/O breakpoints; this allows the processor
to interrupt on I/O reads and writes.

* Page size extensions (PSE): Enables the use of 4-Mbyte pages when set in the
Pentium or 2M-byte pages when set in the Pentium Pro and Pentium.

* Physical address extension (PAE): Enables address lines A35 through A32
whenever a special new addressing mode, controlled by the PSE, is enabled for
the Pentium Pro and subsequent Pentium architectures (Pentium II through
Pentium 4).

» Machine check enable (MCE): Enables the machine check interrupt, which
occurs when a data parity error occurs during a read bus cycle or when a bus
cycle is not successfully completed.

* Page global enable (PGE): Enables the use of global pages. When PGE = 1
and a task switch is performed, all of the TLB entries are flushed with the
exception of those marked global.

¢ Performance counter enable (PCE): Enables the execution of the RDPMC
(read performance counter) instruction at any privilege level. Two performance
counters are used to measure the duration of a specific event type and the num-
ber of occurrences of a specific event type. '

MMX Registers Recall from Section 10.3 that the Pentium MMX capability
makes use of several 64-bit data types. The MMX instructions make use of 3-bit
register address fields, so that eight MMX registers are supported. In fact, the
processor does not include specific MMX registers. Rather, the processor uses an
aliasing technique (Figure 12.22). The existing floating-point registers are used to
store MMX values. Specifically, the low-order 64 bits (mantissa) of each floating-
point register are used to form the eight MMX registers. Thus, the existing Pentium
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MMX registers

Figure 12.22  Mapping of MMX Registers to
Floating-Point Registers

architecture is easily extended to support the MMX capability. Some key character-
istics of the MMX use of these registers:

* Recall that the floating-point registers are treated as a stack for floating-point
operations. For MMX operations, these same registers are accessed directly.

* The first time that an MMX instruction is executed after any floating-point
operations, the FP tag word is marked valid. This reflects the change from
stack operation to direct register addressing,

¢ The EMMS (Empty MMX State) instruction sets bits of the FP tag word to
indicate that all registers are empty. It is important that the programmer insert
this instruction at the end of an MMX code block so that subsequent floating-
point operations function properly.

* When a value is written to an MMX register, bits [79:64] of the corresponding
FP register (sign and exponent bits) are set to all ones. This sets the value in
the FP register to NaN (not a number) or infinity when viewed as a floating-
point value. This ensures that an MMX data value will not look like a valid
floating-point value.

Interrupt Processing

Interrupt processing within a processor is a facility provided to support the operat-
ing system. It allows an application program to be suspended, in order that a variety
of interrupt conditions can be serviced and later resumed.

Interrupts and Exceptions Two classes of events cause the Pentium to suspend
execution of the current instruction stream and respond to the event: interrupts and
exceptions. In both cases, the processor saves the context of the current process and




12.5 / THE PENTIUM PROCESSOR 447

transfers to a predefined routine to service the condition. An interrupt is generated by
a signal from hardware, and it may occur at random times during the execution of a
program. An exception is generated from software, and it is provoked by the execution
of an instruction. There are two sources of interrupts and two sources of exceptions:

1. Interrupts

o Maskable interrupts: Received on the processor’s INTR pin. The processor
does not recognize a maskable interrupt unless the interrupt enable flag
(IF) is set.

 Nonmaskable interrupts: Received on the processor’s NMI pin. Recogni-
tion of such interrupts cannot be prevented.

2. Exceptions

o Processor-detected exceptions: Results when the processor encounters an
error while attempting to execute an instruction.

 Programmed exceptions: These are instructions that generate an exception
(e.g., INTO, INT3, INT, and BOUND).

Interrupt Vector Table Interrupt processing on the Pentium uses the interrupt
vector table. Every type of interrupt is assigned a number, and this number is used to
index into the interrupt vector table. This table contains 256 32-bit interrupt vectors,
which is the address (segment and offset) of the interrupt service routine for that
interrupt number.

Table 12.3 shows the assignment of numbers in the interrupt vector table;
shaded entries represent interrupts, while nonshaded entries are exceptions. The
NMI hardware interrupt is type 2. INTR hardware interrupts are assigned numbers
in the range of 32 to 255; when an INTR interrupt is generated, it must be accompa-
nied on the bus with the interrupt vector number for this interrupt. The remaining
vector numbers are used for exceptions.

If more than one exception or interrupt is pending, the processor services
them in a predictable order. The location of vector numbers within the table does
not reflect priority. Instead, priority among exceptions and interrupts is organized
into five classes. In descending order of priority, these are

e Class 1: Traps on the previous instruction (vector number 1)
Class 2: External interrupts (2, 32-255)
Class 3: Faults from fetching next instruction (3, 14)

Class 4: Faults from decoding the next instruction (6, 7)
Class 5: Faults on executing an instruction (0,4, 5, 8,10-14,16,17)

Interrupt Handling Just as with a transfer of execution using a CALL instruction,
a transfer to an interrupt-handling routine uses the system stack to store the processor
state. When an interrupt occurs and is recognized by the processor, a sequence of
events takes place:

1. If the transfer involves a change of privilege level, then the current stack seg-
ment register and the current extended stack pointer (ESP) register are
pushed onto the stack.
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Table 12.3  Pentium Exception and Interrupt Vector Table

Vector Number Description

0 Divide error; division overtlow or division by zero

Debug exception; includes various faults and traps related to debugging
2 NMIpin interrupt;signal on NMlpin .~ .

3 Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for
debugging

4 INTO-detected overflow; occurs when the processor executes INTO with the OF
flag set

5 BOUND range exceeded: the BOUND instruction compares a register with
boundaries stored in memory and generates an interrupt if the contents of the
register is out of bounds.
Undefined opcode
Device not available; attempt to use ESC or WAIT instruction fails due to lack of
external device

8 Double fault; two interrupts occur during the same instruction and cannot be handled
serially

9 Reserved

10 Invalid task state segment; segment describing a requested task is not initialized
or not valid

11 Segment not present; required segment not present

12 Stack fault; limit of stack segment exceeded or stack segment not present

13 General protection; protection violation that does not cause another exception
(e.g., writing to a read-only segment)

14 Page fault

15 Reserved

16 Floating-point-error; generated by a floating-point arithmetic instruction

17 Alignment check; access to a word stored at an odd byte address or a doubleword
stored at an address not a multiple of 4

18 Machine check; model specific

19-31 Reserved
32-255 User interrupt vectors; provided when INTR signal is activated

Unshaded: exceptions
Shaded: interrupts

[

‘o

0.

- The current value of the EFLAGS register is pushed onto the stack.
- Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR inter-

rupts and the trap or single-step feature.

The current code segment (CS) pointer and the current instruction pointer (IP
or EIP) are pushed onto the stack.

If the interrupt is accompanied by an error code, then the error code is pushed
onto the stack.

The interrupt vector contents are fetched and loaded into the CS and [P
or EIP registers. Execution continues from the interrupt service routine.
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To return from an interrupt, the interrupt service routine executes an IRET
instruction. This causes all of the values saved on the stack to be restored; execution
resumes from the point of the interrupt.

12.6 THE POWERPC PROCESSOR

An overview of the PowerPC processor organization is depicted in Figure 4.14. In
this section, we examine some of the details of the 64-bit implementation.

Register Organization

Figure 12.23 depicts the user-visible registers for the PowerPC. The fixed-point unit

includes the following:

o General: There are thirty-two 64-bit general-purpose registers. These may be
used to load, store, and manipulate data operands and may also be used for
register indirect addressing. Register 0 is treated somewhat differently. For

Fixed-point unit Branch processing unit Floating-point unit
0 63 0 31 ] 63
RO FPRO
0 63
Link |
Count ]
7
R31 FPR31
0 31 "0 31
FPSCR

Fignre 12.23  Power PC User-Visible Registers
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load and store operations and several of the add instructions, register 0 is
treated as having a constant value zero regardless of its actual contents.

* Exception register (XER): Includes 3 bits that report exceptions in integer
arithmetic operations. This register also includes a byte count field that is used
as an operand for some string instructions (Figure 12.23a).

The floating-point unit contains additional user-visible registers:

* General: There are thirty-two 64-bit general-purpose registers, used for all
floating-point operations.

* Floating-point status and control register (FPSCR): This 32-bit register con-
tains bits that control the operation of the floating-point unit and bits that
record the status resulting from floating-point operations (Table 12.4).

l’fal’)‘le 12.4  PowerPC Floating-Point Status and Control Register

Bit Definition

0 T Exception summary. Set if any exception occurs; remains set until reset by software.

1 "+ Enabled exception summary. Set if any enabled exception has occurred.

) 2 - Invalid operation exception summary. Set if an invalid operation exception has occurred.
. < 3 Overflow exception. Magnitude of result exceeds what can be represented.
; 4 Underflow exception. Result is to small to be normalized.

5 Zero divide exception. Divisor is zero and dividend is finite nonzero.

6 Inexact exception. Rounded result differs from intermediate result or an overflow
occurs with overflow exception disabled.

7:12 Invalid operation exception. 7: signaling NaN; 8: (00 — oo )i 9: (00 + 00);10: (0 + 0);
11: (00 X 0); 12: comparison involving NaN.

13 Fraction rounded. Rounding of the result incremented the fraction.

14 Fraction inexact. Rounded result changes fraction or an overflow occurs with overflow
exception disabled.

15:19 Result flags. Five-bit code specifies less than, greater than, equal, unordered, quiet
NaN, £00, +normalized, +denormalized, 0.

20 Reserved

21:23 Invalid operation exception. 21: software request: 22: square root of a negative
number; 23: Integer conversion involving a large number, an infinity, or a NaN.

24 Invalid operation exception enable

25 Overflow exception enable

26 Underflow exception enable

27 Zero divide exception enable

28 Inexact exception enable

29 Non-1EEE mode

30:31 Rounding control. Two-bit code specifies to nearest, toward 0, toward + 00, toward —oo.

Unshaded: status bits
Shaded: control bits




